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Abstract

Let {Tn n > 1} be an arbitrary sequence of non-lattice random variables and let
{S,, n > 1} be another sequence of positive random variables. Assume that the sequences

are independent. In this paper we obtain asymptotic expression for the density function

of the ratio statistic R, = T/S, based on simple conditions on the moment generating
functions of T, and Sn. When S,, = n, our main result reduces to that of Chaganty and

Sethuraman[Ann. Probab. 13(1985):97-1141. We also obtain analogous results when Tn

and Sn, are both lattice random variables. We call our theorems large deviation local limit

theorems for Rn, since the conditions of our theorems imply that R, - c in probability

for some constant c. We present some examples to illustrate our theorems.
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1. Introduction. Let {R,,, n >_ 1} be a sequence of random variables which converge

in distribution to a non-degenerate random variable R. It is well known that convergence

in distribution does not guarantee convergence of the corresponding density functions

pointwise. Let g be the probability density function (p.d.f.) of Rn and let g be the p.d.f.

of R. A theorem which asserts that g, converges to g pointwise is known as a local limit

theorem. Now suppose R, converges to a constant c as n - oo. Let {rn, n > 1} be a

sequence of real numbers bounded away from c. A theorem which obtains the limit of

gn(r,) or an asymptotic expression for gn(r,) is known as a large deviation local limit

theorem. The event {Rn >_ rn} is known as a large deviation event. The study of the

probabilities of large deviation events and its many uses are well described in the books

by Ellis (1985) and Varadhan (1984).

Let {T,, n > 1} be an arbitrary sequence of random variables and let {S", n > 1} be

another arbitrary sequence of positive random variables. Assume that the two sequences

are independent. In this paper we obtain large deviation local limit thoerems for the ratio

statistic Rn = T/S,, based on some mild and easily verifiable conditions on the cumulant

generating functions of T, and S,. In statistical applications T, can be viewed as an

estimate of a location parameter and S,, can be viewed as an estimate of a scale parameter

and a function of the ratio statistic R, = T,/S. can be used to test a hypothesis about

the location parameter. In the case where T, is the sum of i.i.d. random variables and S,

is also the sum of i.i.d. positive random variables the conditions of our theorems are easily

verified and the conclusion of our theorems agrees with the heuristic result of Daniels

(1954). In the case where S, is taken to be degenerate at n, our results reduce to the

theorems of Chaganty and Sethuraman (1985). However, one should note that Condition

(C) of our main result, Theorem 2.1, is weaker than Condition (C) that appears in the

paper of Chaganty and Sethuraman(1985).

The organization of this paper is as follows: In Section 2 we consider the case where

T, is a nonlattice random variable and S, is a positive random variable independent of

T,, and obtain an asymptotic expression for the p.d.f. of R,, = Tft/S. In Section 3 we
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consider lattice valued random variables Tt and S, and obtain asymptotic expressions for

the probability P(T = rnSnt). We illustrate the usefulness of our theorems with three

examples in Section 4.

2. Main Results. Let {Tf,n > 1} be an arbitrary sequence of nonlattice random

variables and {Snt, n > 1} be a sequence of positive random variables. Let 01n and 02,

denote the moment generating functions of Tn and Sn respectively. Assume that O,,n(z) is

nonzero and analytic in Ili = {z Et: Izj < ci} for i = 1, 2, where ' denotes the set of all

complex numbers and ci, i = 1, 2, are some positive constants. Let {an} be a sequence of

real numbers such that an -- 00. Let

(2-1) Vin(z) = -1 log1 in(z) , z E fli , i = 1,2.
an

Let Ji = (-bi, bi), where 0 < bi < ci, for i = 1,2. We are now in a position to state

the main theorem of this section. Theorem 2.1 below obtains a large deviation local limit

theorem for the ratio statistic Rn = Ta/Sn.

THEOREM 2.1. Assume that the two sequences {T,, n > 1} and {Sn, n > 1} are inde-

pendent. Let {rn} be a bounded sequence of real numbers such that there exists a sequence

{7-n} contained in J, satisfying

(2-2) k'k(rfn) - rVJ4ft(-rnrn) = 0

and rftrt E J2 for all n > 1. Assume that the following conditions are satisfied:

(A) There exists i such that Ikn f(z)I < i for n > 1 and z E fli, i = 1,2.

(B) There exist ai > 0, i = 1, 2, such that 0t"(r,,) > al and O,(-rnrf) > a2 for all

n>1.

(C) For any given 6 > 0, there exist 0 < 7 < 1 and q > 0 such that

(2-3) limsup sup 0I(r, + it) I/ a .
n tj>61 0n(Tn) <
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and

(2-4) sup Itn(Crn(Tn + it))l = o(al).
It1>6

(D) There exist p > 0, 1 > 0 such that

(2-5) j Oi.(rn + it) / dt =(a).
-00

Then an asymptotic expansion for the density function g, of T,/S, at the point r,

is given by

(2-6)
gn(r,) exp[a,(Cln,(r,) + 02n(-r, r,))] [1 + 0(1)]

=27r(V'"(7n) + r4,i(-",r))]1/2

We shall postpone the proof of the theorem until the end of Lemma 2.9. At this point

some remarks about the conditions (A) thru (D) are in order.

Remark 2.2. Condition (A) of Theorem 2.1 requires that b1, and P2, be bounded

uniformly in n in a circle around the origin in the complex plane. Therefore the derivatives

of Oin, i = 1, 2 are also uniformly bounded in a neighborhood of the origin and hence

E(T,)/an, Var(T,)/a,, E(S,)/a, and Var(S,) are all uniformly bounded in n. Thus,

we can find a subsequence {m} such that Tm/am and Sm/a, approach constants in

probability as m -- co. Therefore the ratio statistic Rm = Tm/Sm converges to a constant

in probability as m -+ co.

Remark 2.3. Condition (D) of Theorem 2.1 implies that the characteristic function

(c.f.) O1 ,(r, + it)/41 n(rn) is absolutely integrable for sufficiently large n and hence the

random variable corresponding to this c.f. is absolutely continuous. Therefore, given 6 > 0,

for each n > no we can find 0 < ?7n < 1 such that

(2-7) sup I0,n(r + it)/Oln(r,) 1/an < ?7,
ItI>6
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Condition (C) requires that the limsup,, (i/n) should be less than 1. We use this condition

mainly in Lerma 2.7 to show that the term In I defined in (2-15) goes to zero exponentially

fast.

Remark 2.4. Condition (D) guarantees the existence of the density function of T, and

permits the use of the inversion formula to get an expression for the p.d.f. of Tn. This

condition is also used to show that the term I, defined in (2-15) goes to zero exponentially

fast.

Remark 2.5. It is interesting to note that if Sn is a non-lattice random variable the

conclusion of Theorem 2.1 holds if Ol, is replaced by 02n in (2-3).

We will need the following Lemmas 2.6 thru 2.9 in the proof of Theorem 2.1.

LEMMA 2.6. Let Vki, be as defined in (2-1), for i = 1, 2. Assume that Condition (A) of

Theorem 2.1 holds. For i = 1, 2, let

(2-8) R,,(r + it) = ii,(r + it) - 4',n(r) - (it) ,(r) - (it)2  (r) - _ ,,(r)2 i

and
,('r ) 2V",()

(2-9) Rn(r + it) = 0b.(r + it) - aI.4(r) - (it)0''n) (( 2 n

Then the following holds:

(2-10) sup / )i for all k > 1
ZE(cb) for - bi)ak

where fl = {z E r: Izi < bi}, i = 1,2. Also there exists 60 > 0 such that whenever

It! < 60o,

(2-11) sup IRi, (r + it) I 20t 4 ) for i = 1,2
rE J (ci - bi

and

(2-12) sup JR,(r + it)j < 2021Wi4

rEJ2 (C2 -b2)
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Proof. The proof of this lemma follows from Cauchy's theorem and is similar to the

proof of Lemma 2.10 of Chaganty and Sethuraman (1985) and hence is omitted.

The next Lemma 2.7 shows that the term In, appearing in the proof of Theorem 2.1

goes to zero exponentially fast.

LEMMA 2.7. Let bi/, be as defined in (2-1), for= 1,2. Let {r,} be a sequence of real

numbers. Assume that (2-2) and conditions (A) thru (D) of Theorem 2.1 are satisfied. Let

(2-13) fr(z) = 01,,z) + 2.(-r,,z)

and

(2-14) D,(t) = ¢i4(-rn(r + it))/,/4,(-rr,).

Then

(2-15) [anf,"=(Tn ) f 12 exp[an(fn(r, + it) - f. (r,))] D.,(t-) dt

ItI>61

goes to zero exponentially fast for all 61, 0 < 61 < 60, where 6o is as in Lemma 2.6.

Proof. Note that

(2-16) I [an f rn)] 1 /2 J exp [an(fn(rn + it) - fn(rn))] D,(t) dt

Itl>6,

Substituting tk 1i(z) + V2n(-rz) for f,(z) in the integrand we get

All [an f n"(rn) 1/2 f ln(r, + it) V)2n(-rn(rn + it)) dt
27r n (r,) [ 2f- rC +n)n

ItI>61

< ____ _ €s (r n + it)) k(rn + it)[an~'~(rI I 1/ _ __ _ __ __

(2-17) x f +1 t(r ) dt

-00O
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where t is as in Condition (D). Using (2-10) and Conditions (B) thru (D) we get for

sufficiently large n,

Ind, - O(an ) /"' '"

( -IS) = (q + p+ ' - ,, (a. - )
(2-18) -~a

where r7 = -log(r) > 0. Hence Ini goes to zero exponetially fast since a, - oc as

n - o0.

We need the following Lemma 2.8 in the proof of the next Lemma 2.9.

LEMMA 2.8. Let i,, be as defined in (2-1), for i = 1,2. Let {r, } be a sequence contained

in J, satisfying (2-2) and rr, E J2 for all n > 1. Assume that Conditions (A), (B) of

Theorem 2.1 hold. Let D,(t) be as defined in (2-14) and let

(2-19) Ln(s) = exp (zn(s)) Dn( Sn - n l- (S)]

where

i3  3 3is .,,, irns3 1,,
z,,(s) = [, P I(,,) + 6 7a , kn 0(-rrn,,)

(2-20)

+ +nRn( + i ) + . - rn(r + Ijs
VNa-an

Then there exists 61, 0 < 6 < 60, such that

(-21) n n exp 2 f )

I 1I< ra-;61

Proof. Let 61 be less than 6o, where 6o is as in Lemma 2.6. Using (2-19) we can write

Q, as the sum of two integrals as follows:

(2-22), =[ f,( .n) 1/ Sn 2f(r)s
Qn 27r f exp 2sJ:(n ) ( e x p ( zn ( s , , -  - n(s)) Dn( \'-) ds

< ra- b

+ fu()11/2 exp S2 fn(rn) (1+ zn (s))[D(----) -l ds

= Qni + Qn2 (say).
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We complete the proof of the lemma by showing that Q,,, = 0(1/a,) for i = 1,2. In order

to show that Qj = O(1/a,), we get an upper bound for exp(z,(s)) - 1 - zn(s)i first by

obtaining an upper bound for zn(s). For {I < a'-6, using Condition (A). (2-10) and

(2-11) we get that

izn(S),<15,3 01 + _' rn S 4 2  3  2r 4 32"I
V'- I(ci - bl) 3  (C2 - b2)3 I an (cl - bl) 4  (c 2 - b2) ,

(2-23) < + r33 2  +s262 20, 2r 4 32

' I~(c 1 - b1) (c - 12) jL(c, - bl)4 (C2 - b2 ) 
4

= s2M(61 ) (say)

where r = sup 1ir, . Let 61 be such that M(6 1) < al/2. We are now in a position to show

that QI = 0(1/a,). Using Condition (B) and (2-10) it is easy to check that f(,r,) >_ a1

and f",(rn) = 0(1) and D,,(-7:) = 0(1) for Isl < v'a-6i. Therefore

(2-24) IQn11 !5 0(1) exp(-- a'-)Iexp(z. (s))-lz, (S)Ids.1 2
1a 1< V'1-- 61

Using the simple inequality I exp(z) - 1- zI < Iz12 exp([zI) and the upper bounds in (2-23)

for zn(s) we get that
s 
2

Q,, O(1) / exp (- 2(ai - 2M(6 1 ))
Is < /6z

(2-25) [ sj3 1 +3 +S 4  + 2,32 r 4s4  2

XL(C1 - bl)' (C2 - b2)3  V/a;(C, - bi )4 -/(C 2 - b 2)4

1
an

since M(6 1) < al/2. The second integral Qn2 can be handled similarly after noting that

for 'is; < v/anb,
-irns tP1(_r,Tn) r2s 2 01"(-rnrn) Rn(-rn(,rn +i

(2-26) On( S )i rI - ¢i _,r) n, ¢ (rn) 2 n(- rn7-,)
Ihh [j n' Vfj 02(r n) an 0I4n(-rnr) i~vnn

Using Condition (B), (2-26) and Lemma 2.6 we can easily verify that Q,2 = 0(1/an).

This completes the proof of Lemma 2.8.

The next lemma shows that the term In2 appearing in the proof of the main Theorem

2.1 is 1 + 0(1/an).

9



LEMMA 2.9. Let fn(z) and D,(t) be as defined in (2-13) and (2-14) respectively. Let

61 > n e as in Lemma 2.8. Assume that Conditions (A) and (B) of Theorem 2.1 hold.

Ti,en

2 r / exp[an(f,(r-n + it) - fn(rn))] Dn(t) dt

(2-27)

11o(-).
an

Proof. Making a change of variable t = s/.fa-n, we get that

(2-28) In2 fn(Tn / exp[a.(f.(rn + is/C-h - fV(r,))A D( ) ds.
i< V'- 61 V-

Note that for is! < V/-n-., we can write

2(2-29) an (fn(rn + A A(rn)) n ;(" .s

where zn(s) is as defined by (2-20). Hence

(2-30) 1/2 2

( 30 fn!(n) 2 exp [- 2 f()] [1 + Zn(s) + L (s)Ids

1IaI < ,f-n'" 61

where L, (s) is as defined by (2-19). The r.h.s. of (2.30) can be written as the sun of three

integrals. The first integral is 1 + O(1/an) follows from Mill's ratio. Using (2-23) we can

easily verify that the second integral is O(1/an). The third integral is O(1/a,) as shown

in Lemma 2.8. Thus In2 1 + O(1/an). This completes the proof of Lemma 2.9.

We now proceed with the proof of the main Theorem 2.1.

Proof of Theorem 2.1. Let Fin, F2n and Gn be the distribution functions of Tn, S,

and Rn = Tn/Sn respectively. Since Tn and Sn are independent we have G,(r)

10



JFin(ry) dF 2 n(y), for any r. Hence the probability density function, g,, of R, is given

by 00
(2-31) gn(r) j= yfi(ry) dF2 n(y)

where fin is the p.d.f. of Tn. Proceeding as in the proof of Theorem 2.1 of Chaganty and

Sethuraman (1985) we get that

(2-32) f!n(x) f 0 Oln(r + it) exp(-x(r - it)) dt

for any T C J 1 . Therefore

gn(rn) f j J yd.'n(r + it) exp(-rny(r + it)) dt dF 2 n(y)

= - ,(r + it) yexp(-rny(r+ it)) dF2n(Y) dt2 7r f -00f

(2-33)

= - J n(r + it)Z0 (-rn(r + it)) dt27r _ O

] cc exp [an(ik (r + it) + 0 2n(-rn (r + it)))] )n(-rn(r + i t)) dt.

We note that the integral on the r.h.s. of (2-33) remains the same for all r in J1 .

The saddle point method suggests that the appropriate choice of r is rn which satisfies the

equation (2-2), that is, O',(r,) = rn02,n(-rnr,n). Replacing r by rn in the r.h.s. of (2-33)

we can rewrite

an 00

gn(rn) = J exp[an(Oln(rn + it) + V2n(-rn(rn + it)))]V)2n(-r(, + it)) dt

(2-34)
(2-34)V a/jt/4,(-rnjn) exp[an(O'1n(r-n) + tk2n(-rnrn))]

[27r( 0 ' (7-n) + r i ' (- rn rn))] 1/2

where

(2-35) In L 2r / exp[an(fn(r + it) - fn(rn))I Dn(t) dt

I1



where fn(z) and Dn(t) are as defined in (2-13) and (2-14) respectively. We can write the

integral on the r.h.s. of (2-35) as the sum of two integrals, the first integral over the region

{ t > 611} and the second integral over the region {Itl < bi}. Thus

In = 1n 1 + In 2

where I,, and 1,2 are as defined in (2-15) and (2-27) respectively. Lemmas 2.7 and 2.9

show that 1,1 = 0(1/an) and In2 = 1 + 0(1/'a,). Thus

1,-- 1 + 0(1/a,)

and this completes the proof of the Theorem 2.1.

In the case where T, and S,, are chosen to be the sums of n i.i.d. random variables,

the Conditions (A) thru (D) of Theorem 2.1 are very much simplified and they are easy to

verify. We state this case as a separate theorem because of its importance in mathematical

statistics. Later, in Section 4 we shall apply Theorem 2.10 to some examples.

THEOREM 2.10. Let {Xn,n > 1} be a sequence of i.i.d. non-lattice random variables

with moment generating function €1. Let {Y,, n > 1} be a sequence of i.i.d. positive valued

random variables with moment generating function ¢2. Assume that the two sequences

are independent. Let 0j(z) be non-vanishing and analytic in fVi = {z e: jz < ci} for

i = 1,2. Let J = (-bi,bi) where 0 < bi < ci,i= 1,2. Let {r,,} be a sequence of real

numbers such that there exists {T,} contained in J1 satisfying

(2-36) V)(.) -) = 0

and r,r, E J 2 for all n > 1. Assume that the following conditions hold:

(A1) There exist Oi < oo such that I Tp(z)I < 0j for all z E fli, i = 1,2.

(BI) There exist a1 > 0, i = 1,2, such that 0"(r,) > a, and 0'(-rrn) > a 2 for all n > 1.

(C) For any given 6 > 0, there exists q > 0 such that

(2-37) sup IV'(-r.n(rn + it)) = (0)
jtj>6

12



(D1) There exists e > 0 such that

(2-38) limsup it) dt = M < oo.n 1-00 (rn)

Let Tn = X 1 - X- .. n- X, and S, = Y1 + .. + Y. If gn denotes the p.d.f. of R, - T,/S,, then

V,'itk)'(-rnrn) 1(2-39) g =(rn) [ + V)"( exp[n(V/,(r.) + [2(-rnrn))1 [1 + O(-Y.[21r(O r + r (-rnn) )] /
_
2 n

Proof. The conclusion of this theorem follows easily from Theorem 2.1 where we choose

an = n. Note that in this case (2-3) is automatically satisfied (see Remark 2.3).

3. The Lattice Case. In this section we obtain large deviation local limit theorems for

the ratio statistic Rn = Tn/Sn analogous to the results of Section 2 in the case where Tn

and Sn are independent lattice valued random variables. The main result of this section is

stated as Theorem 3.1. We shall not deal with the case where Tn is lattice valued and Sn is

non-lattice valued, since this problem can be reduced to the case covered by Theorem 2.1 if

we consider the ratios Sn/T + and Sn/T; where T + and Tn- are the positive and negative

parts of Tn respectively. We shall continue to use the notation introduced in Section 2.

THEOREM 3.1. Let {Tn, n > 1} be a sequence of lattice valued random variables with

spans {hn > 0, n > 1}. Let {Sn,n > 1} be an independent sequence of positive lattice

valued random variables. Let {r.} be a sequence of real numbers as in Theorem 2.1

satisfying (2-2). Assume that Tn and Sn satisfy Condition (A) of Theorem 2.1. Further

replace Conditions (B), (C) and (D) by the following:

(B') There exists a, > 0 such that V)" (r,) > a, for n > 1.

(C') Given 6 > 0, there exists 1?, 0 < 17< 1, such that

(3-1) lim sup sup 0In(rn + it) I Il a n <

13



(D') There exist positive constants p and t such that

(3-2) f Oln(r. + it) /a(a).

Let P,(r,) = P(TL = rS,). Then

(3-3)-n P n(r ) = exp [a (Vil (rn,) + P2 ,(-rnr,))] i_1_ 0

(33) [21r(V)) ,() + r[1 + /2 an

Proof. Consider

Pn(rn) =P(Tn = rnSn)

(3-4) - Z P(Tn = ry) P(Sn = y)

since Tn and Sn are independent. Proceeding as in the proof of Theorem 2.2 of Chaganty

and Sethuraman (1985) and using Condition (D') we can show that

(3-5) P(T, = Ny) = h J-r/h O&n(rn + it) exp(-rny(rn + it)) dt

Combining (3-4) and (3-5) and interchanging the order of summation and integration we

get that

P,(rN) = f h (rn + it) 02n(-rn(rn + it)) dt
hr r/h,.

hn 'Iw/hn
(3-6) = f exp [a,(tkin(r, + it) + ¢ 2,(-rn(r, + it)))] dt.

Therefore

n Pn(rn) = /h~ exp [at(Oll(rt + it) + 0 2,(-r,(r, + it)))] dt
2rf I-/h.

(=7 exp [la(Ol-(r ) + k2n(-rnrn))] in
2 Ift

[2r(VP"'(T' ) + ,.o .(-r. .) 1/2

14



where

(3-8) = [f"L 1/21 expla.(f.(r + it) - f,,,(r)) dt2r -n h

and f,(z) is as defined in (2-13). Using Conditions (A), (B'), (C') and (D') and imitating

Lemmas 2.6 thru 2.9 we can show that

1)
(3-9) 1,. = 1 +o(.

a,

The two identities (3-7) and (3-9) complete the proof of Theorem 3.1.

Remark 3.2. When an = n and Sn is taken to be degenerate at n, our Theorems 2.1

and 3.1 reduce to Theorems 2.1 and 2.2 respectively of Chaganty and Sethuraman (1985).

Thus the main results of this paper generalize the results of Chaganty and Sethuraman

(1985).

4. Applications. In this section we present four examples to illustrate the theorems of

Sections 2 and 3. These example cover all the combinations of non-lattice and lattice cases

for T, and S,. The examples clearly demonstrate the wide applicability of our theorems.

The conditions of our theorems are easily verified in these examples because both Tn and

S, are sums of n i.i.d. random variables. One should note that in all these examples

the exact density does not have a closed form, however our theorems provide a simple

asymptotic expressions for the density functions.

Example 4.1. Let T,, be distributed as Normal with mean 0 and variance n. Let S,

be distributed as chi-square with n degrees of freedom. Assume that Tn and S, are

independent. The m.g.f.'s of T,, and S,, are given by

(4-1) 01n(z) = exp(nz 2 /2), IzI < oo

and

(4-2) 0 2 n(Z) = (1 - 2z) - n/ 2, )j < 1/2.

15



Let {r,} be a sequence of real numbers such that sup,, ri = r < 1. Let r,

(-1 + V/1 . 8r,)/4r,. We can choose 0 < c, < 00,0 < c2 < 1/2 and 0 < b, < c,

for i = 1,2 such that Condition (2-2) and Conditions (A) thru (D) of Theorem 2.1 are

satisfied with a, = n. Let g, be the p.d.f. of T,,/S,. Then by the conclusion of Theorem

2.1 we have

(4-3) gn(rn) a 1 [)] ±V27r(1 + 2rr, _+'I+ 2T2)1/2 ex 2 n[ O

Note that in this example both Tn and Sn are non-lattice valued random variables.

Example 4.2. Let 'T, be as in Example 4.1. Let S, be Poisson with mean n. Assume

that T, and S, are independent. The m.g.f.'s of Tn and S, are given by

(4-4) 01,,(z) =exp (nz 2 /2), izI < 00

and

(4-5) 0 2 n(z) = exp (n(exp(z) - 1)), Izl < o0

Let {r,} be a bounded sequence of real numbers. Let rn be such that the following

equation is satisfied:

(4-6) = rn exp(_rnrn).

We can choose finite positive constants cl, c2 and b1 , b2 such that 0 < bi < c, for

i = 1,2 and Condition (2-2) and Conditions (A) thru (D) of Theorem 2.1 are satisfied

with an = n. Note that the ratio random variable IRnI = ITn/Snl takes the value oc

with probability exp(-n) and possess an improper density function gn(r) on the interval

(-oo,o o). By the conclusion of Theorem 2.1 we have

(4-7) gn(rn) - V  exp( -rnrn) exp [nr/2 + n(exp(-rnrn) - 1)] 1 + 0(1)1Sr(I +rnl")l/2
f6n
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Note that in this example we have considered non-lattice over lattice random variables.

Example 4.3. Let Tn and S, be distributed as Poisson with means nA, and nA 2 re-

spectively. Assume that Tn and S, be independent. The m.g.f.'s of T, and Sn are given

by

(4-8) 0, (z) = exp(nAi(exp(z) - 1)), izi < oo

and

(4-9) 02,l(z) = exp(nA 2 (exp(z) - 1)), z; < o

Let {rn } be a bounded sequence of positive rational numbers. Let

Irn = [log(rn) + log(A2/Al)]/(i + rn).

We can find constants CI, C2 and bl, b2 such that 0 < bi < c,, for i = 1,2 and
Condition (2-2) and all the Conditions (A), (B'), (C') and (D') of Theorem 3.1 are satisfied

with an = n. Let Pn(rn) = P(T, = rS,). Then from the conclusion of Theorem 3.1 we

get

exp[n(AI(exp(r) - 1) + )2 (exp(-rnr) - 1 1 + 1(4-10) V' Pn (n) -- [2r(A1 exp (r) + A2 r2 exp(-rnrn))]1/ 2  n
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